We are a research group focused on studying how collective and cooperative states of matter emerge in quantum many-body systems. We employ the tools of theoretical physics to study phase transitions, dimensional crossover and entanglement in quantum fluids, ultra-cold bosonic gases, superconductors and topological states of matter. This includes using quantum field theory in tandem with the development of novel high-performance computational algorithms for the study of strongly interacting quantum matter. We specialize in the low dimensional spatial continuum, where strong fluctuations preclude any long range ordered phases, and instead a type of universal liquid description is appropriate. Ultimately, we hope to learn how to harness the unique correlations present in all quantum-mechanical phases for high-precision measurement, secure long-distance communication and non-classical computation.
is a Professor and Head of the Department of Physics & Astronomy and a Professor in the Min H. Kao Department of Electrical Engineering and Computer Science at the University of Tennessee, Knoxville. He is a member of the Institute for Advanced Materials and Manufacturing (IAMM) and the IAMM Quantum Center.